Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(27): e2123090119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759670

RESUMEN

Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, is essential for cellular energy metabolism coupling NADH oxidation to proton translocation. The mechanism of proton translocation by complex I is still under debate. Its membrane arm contains an unusual central axis of polar and charged amino acid residues connecting the quinone binding site with the antiporter-type subunits NuoL, NuoM, and NuoN, proposed to catalyze proton translocation. Quinone chemistry probably causes conformational changes and electrostatic interactions that are propagated through these subunits by a conserved pattern of predominantly lysine, histidine, and glutamate residues. These conserved residues are thought to transfer protons along and across the membrane arm. The distinct charge distribution in the membrane arm is a prerequisite for proton translocation. Remarkably, the central subunit NuoM contains a conserved glutamate residue in a position that is taken by a lysine residue in the two other antiporter-type subunits. It was proposed that this charge asymmetry is essential for proton translocation, as it should enable NuoM to operate asynchronously with NuoL and NuoN. Accordingly, we exchanged the conserved glutamate in NuoM for a lysine residue, introducing charge symmetry in the membrane arm. The stably assembled variant pumps protons across the membrane, but with a diminished H+/e- stoichiometry of 1.5. Thus, charge asymmetry is not essential for proton translocation by complex I, casting doubts on the suggestion of an asynchronous operation of NuoL, NuoM, and NuoN. Furthermore, our data emphasize the importance of a balanced charge distribution in the protein for directional proton transfer.


Asunto(s)
Membrana Celular , Complejo I de Transporte de Electrón , Proteínas de Escherichia coli , NADH Deshidrogenasa , Sustitución de Aminoácidos , Membrana Celular/química , Secuencia Conservada , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glutamatos/química , Glutamatos/genética , Lisina/química , Lisina/genética , NADH Deshidrogenasa/química , NADH Deshidrogenasa/genética , Protones , Quinonas/química
2.
Sci Rep ; 11(1): 12641, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135385

RESUMEN

NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients' tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Escherichia coli/crecimiento & desarrollo , Proteínas Mitocondriales/genética , Mutación , NADH Deshidrogenasa/genética , Adulto , Benzoquinonas/metabolismo , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Escherichia coli/genética , Humanos , Recién Nacido , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , NADH Deshidrogenasa/química , NADH Deshidrogenasa/metabolismo , Operón , Plásmidos/genética
3.
Mitochondrion ; 54: 21-25, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32652230

RESUMEN

Tuberculosis caused by Mycobacterium tuberculosis is one of the main global health concerns. In this study, the entire mitochondrial genome from blood samples of tuberculosis patients was analyzed to understand the possible mtDNA variants. The potential impact of non-synonymous substitutions on protein functions were determined using prediction tools. 28 non- synonymous variants were found of which 2 variants (MT-ND2 g. A > G4824 p.T119A and MT-ND6 g. T > C14180 p.Y165C) were found to be deleterious among the cases only. Majority of the variants lie in the D-loop of the non-protein coding region of the mitochondrial DNA. We propose that mutations in the mitochondrial genome need to be validated further to understand their association with tuberculosis.


Asunto(s)
Mitocondrias/genética , NADH Deshidrogenasa/genética , Polimorfismo de Nucleótido Simple , Tuberculosis/genética , Predisposición Genética a la Enfermedad , Genoma Mitocondrial , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , India , NADH Deshidrogenasa/química , Dominios Proteicos , Análisis de Secuencia de ADN , Población Blanca/genética
4.
Mitochondrion ; 54: 57-64, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659360

RESUMEN

Pathogenic point mutations of mitochondrial DNA (mtDNA) are associated with a large number of heterogeneous diseases involving multiple systems with which patients may present with a wide range of clinical phenotypes. In this study, we describe a novel heteroplasmic missense mutation, m.11406 T > A, of the ND4 gene encoding the subunit 4 of mitochondrial complex I in a 32-year-old woman with recurrent epileptic seizure, headache and bilateral hearing loss. Skeletal muscle histochemistry demonstrated that approximately 20% of fibers were cytochrome C oxidase (COX) deficient with increased activity of succinate dehydrogenase (SDH). Further investigations in muscle specimens showed significantly reduced level of ND4 protein. It is interesting that the subunits of complex I (ND1 and NDFUB8) and complex IV(CO1) were also remarkably decreased. These findings indicate that ND1, NDFUB8 and CO1 are more susceptible than other subunits to mutations in the mitochondrial ND4 gene.


Asunto(s)
Pérdida Auditiva Bilateral/etiología , Síndrome MELAS/diagnóstico por imagen , Mutación Missense , NADH Deshidrogenasa/genética , Convulsiones/etiología , Adulto , Femenino , Predisposición Genética a la Enfermedad , Pérdida Auditiva Bilateral/genética , Humanos , Síndrome MELAS/genética , Imagen por Resonancia Magnética , Masculino , Modelos Moleculares , NADH Deshidrogenasa/química , Linaje , Polimorfismo de Nucleótido Simple , Convulsiones/genética
5.
J Biol Chem ; 295(9): 2544-2554, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31974161

RESUMEN

Mammalian mitochondria assemble four complexes of the respiratory chain (RCI, RCIII, RCIV, and RCV) by combining 13 polypeptides synthesized within mitochondria on mitochondrial ribosomes (mitoribosomes) with over 70 polypeptides encoded in nuclear DNA, translated on cytoplasmic ribosomes, and imported into mitochondria. We have previously observed that mitoribosome assembly is inefficient because some mitoribosomal proteins are produced in excess, but whether this is the case for other mitochondrial assemblies such as the RCs is unclear. We report here that pulse-chase stable isotope labeling with amino acids in cell culture (SILAC) is a valuable technique to study RC assembly because it can reveal considerable differences in the assembly rates and efficiencies of the different complexes. The SILAC analyses of HeLa cells indicated that assembly of RCV, comprising F1/Fo-ATPase, is rapid with little excess subunit synthesis, but that assembly of RCI (i.e. NADH dehydrogenase) is far less efficient, with dramatic oversynthesis of numerous proteins, particularly in the matrix-exposed N and Q domains. Unassembled subunits were generally degraded within 3 h. We also observed differential assembly kinetics for individual complexes that were immunoprecipitated with complex-specific antibodies. Immunoprecipitation with an antibody that recognizes the ND1 subunit of RCI co-precipitated a number of proteins implicated in FeS cluster assembly and newly synthesized ubiquinol-cytochrome c reductase Rieske iron-sulfur polypeptide 1 (UQCRFS1), the Rieske FeS protein in RCIII, reflecting some coordination between RCI and RCIII assemblies. We propose that pulse-chase SILAC labeling is a useful tool for studying rates of protein complex assembly and degradation.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Proteínas Hierro-Azufre/genética , Mitocondrias/genética , NADH Deshidrogenasa/genética , ATPasas de Translocación de Protón/genética , Técnicas de Cultivo de Célula/métodos , Núcleo Celular/genética , ADN/genética , Transporte de Electrón/genética , Complejo I de Transporte de Electrón/química , Células HeLa , Humanos , Marcaje Isotópico/métodos , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales/metabolismo , NADH Deshidrogenasa/química , Péptidos/genética , Transporte de Proteínas/genética , ATPasas de Translocación de Protón/química
6.
Anal Chim Acta ; 1095: 219-225, 2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31864626

RESUMEN

Herein we present a general and turn-on strategy for enzymatic bioassays on the basis of redox state dependent emission of gold nanoclusters (AuNCs). The photoluminescence of AuNCs was quenched obviously by the oxidative ferricyanide while unaffected by its corresponding reduced state, i.e., ferrocyanide. The distinctive quenching abilities for AuNCs by the redox couple (ferricyanide/ferrocyanide) enabled their utility as new fluorescent sensing platforms to detect redox-related phenomena. The proposed protocols were conducted by using the model oxidoreductases of glucose oxidase (GOx) and the enzyme cascade of lactate dehydrogenase (LDH)/diaphorase to catalytically convert ferricyanide to ferrocyanide, which switched on fluorescence of the detection systems. The detection limit for glucose and lactate was found to be as low as 0.12 and 0.09 µM, respectively. This work features the first use of the redox couple of ferricyanide/ferrocyanide in fluorescent bioanalysis, which enables versatile, signal on and highly sensitive/selective detections as compared to the state of the art fluorescently enzymatic sensing platforms. Importantly, considering the significance of ferricyanide/ferrocyanide involves in numerous other oxidoreductases mediated biocatalysis, this protocol has wide versatility that enables combination with oxidoreductases related reactions for biosensing.


Asunto(s)
Colorantes Fluorescentes/química , Glucosa/análisis , Ácido Láctico/análisis , Nanopartículas del Metal/química , Espectrometría de Fluorescencia/métodos , Animales , Bovinos , Ferricianuros/química , Fluorescencia , Glucosa/química , Glucosa Oxidasa/química , Oro/química , Humanos , L-Lactato Deshidrogenasa/química , Ácido Láctico/química , Límite de Detección , NADH Deshidrogenasa/química , Oxidación-Reducción , Albúmina Sérica Bovina/química
7.
Anal Chem ; 92(1): 1363-1371, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31794197

RESUMEN

High-throughput drug discovery is highly dependent on the targets available to accelerate the process of candidates screening. Traditional chemical proteomics approaches for the screening of drug targets usually require the immobilization/modification of the drug molecules to pull down the interacting proteins. Recently, energetics-based proteomics methods provide an alternative way to study drug-protein interaction by using complex cell lysate directly without any modification of the drugs. In this study, we developed a novel energetics-based proteomics strategy, the solvent-induced protein precipitation (SIP) approach, to profile the interaction of drugs with their target proteins by using quantitative proteomics. The method is easy to use for any laboratory with the common chemical reagents of acetone, ethanol, and acetic acid. The SIP approach was able to identify the well-known protein targets of methotrexate, SNS-032, and a pan-kinase inhibitor of staurosporine in cell lysate. We further applied this approach to discover the off-targets of geldanamycin. Three known protein targets of the HSP90 family were successfully identified, and several potential off-targets including NADH dehydrogenase subunits NDUFV1 and NDUFAB1 were identified for the first time, and the NDUFV1 was validated by using Western blotting. In addition, this approach was capable of evaluating the affinity of the drug-target interaction. The data collectively proved that our approach provides a powerful platform for drug target discovery.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Metotrexato/farmacología , NADH Deshidrogenasa/antagonistas & inhibidores , Oxazoles/farmacología , Proteómica , Estaurosporina/farmacología , Tiazoles/farmacología , Ácido Acético/química , Acetona/química , Células Cultivadas , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Etanol/química , Células HEK293 , Proteínas HSP90 de Choque Térmico/química , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Metotrexato/química , NADH Deshidrogenasa/química , NADH Deshidrogenasa/metabolismo , Oxazoles/química , Solventes/química , Estaurosporina/química , Tiazoles/química
8.
Cells ; 8(10)2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557978

RESUMEN

Complex I (CI) is the first enzyme of the mitochondrial respiratory chain and couples the electron transfer with proton pumping. Mutations in genes encoding CI subunits can frequently cause inborn metabolic errors. We applied proteome and metabolome profiling of patient-derived cells harboring pathogenic mutations in two distinct CI genes to elucidate underlying pathomechanisms on the molecular level. Our results indicated that the electron transfer within CI was interrupted in both patients by different mechanisms. We showed that the biallelic mutations in NDUFS1 led to a decreased stability of the entire N-module of CI and disrupted the electron transfer between two iron-sulfur clusters. Strikingly interesting and in contrast to the proteome, metabolome profiling illustrated that the pattern of dysregulated metabolites was almost identical in both patients, such as the inhibitory feedback on the TCA cycle and altered glutathione levels, indicative for reactive oxygen species (ROS) stress. Our findings deciphered pathological mechanisms of CI deficiency to better understand inborn metabolic errors.


Asunto(s)
Transporte de Electrón/genética , Metabolismo Energético/genética , Errores Innatos del Metabolismo/genética , Metaboloma/genética , NADH Deshidrogenasa/genética , Estudios de Casos y Controles , Células Cultivadas , Reprogramación Celular/genética , Análisis Mutacional de ADN , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Modelos Moleculares , NADH Deshidrogenasa/química , NADH Deshidrogenasa/metabolismo , Embarazo , Cultivo Primario de Células , Conformación Proteica , Proteoma/genética
9.
Plant Sci ; 288: 110205, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31521217

RESUMEN

Maize kernel size and weight are essential contributors to its yield. So the identification of the genes controlling kernel size and weight can give us a chance to gain the yield. Here, we identified a small kernel mutant, Zea mays small kernel 9 (Zmsmk9), in maize. Cytological observation showed that the development of the endosperm and embryo was delayed in Zmsmk9 mutants at the early stages, resulting in a small kernel phenotype. Interestingly, despite substantial variation in kernel size, the germination of Zmsmk9 seeds was comparable to that of WT, and could develop into normal plants with upright leaf architecture. We cloned Zmsmk9 via map-based cloning. ZmSMK9 encodes a P-type pentatricopeptide repeat protein that targets to mitochondria, and is involved in RNA splicing in mitochondrial NADH dehydrogenase5 (nad5) intron-1 and intron-4. Consistent with the delayed development phenotype, transcriptome analysis of 12-DAP endosperm showed that starch and zeins biosynthesis related genes were dramatically down regulated in Zmsmk9, while cell cycle and cell growth related genes were dramatically increased. As a result, ZmSMK9 is a novel gene required for the splicing of nad5 intron-1 and intron-4, kernel development, and plant architecture in maize.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , NADH Deshidrogenasa/genética , Proteínas de Plantas/genética , Zea mays/genética , Secuencia de Aminoácidos , Perfilación de la Expresión Génica , Germinación/genética , Intrones , Proteínas Mitocondriales/metabolismo , NADH Deshidrogenasa/química , NADH Deshidrogenasa/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Semillas/fisiología , Zea mays/crecimiento & desarrollo
10.
Phys Chem Chem Phys ; 21(33): 18105-18118, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31396604

RESUMEN

With the emergence of drug-resistant Plasmodium falciparum, the treatment of malaria has become a significant challenge; therefore, the development of antimalarial drugs acting on new targets is extremely urgent. In Plasmodium falciparum, type II nicotinamide adenine dinucleotide (NADH) dehydrogenase (NDH-2) is responsible for catalyzing the transfer of two electrons from NADH to flavin adenine dinucleotide (FAD), which in turn transfers the electrons to coenzyme Q (CoQ). As an entry enzyme for oxidative phosphorylation, NDH-2 has become one of the popular targets for the development of new antimalarial drugs. In this study, reliable motion trajectories of the NDH-2 complex with its co-factors (NADH and FAD) and inhibitor, RYL-552, were obtained by comparative molecular dynamics simulations. The influence of cofactor binding on the global motion of NDH-2 was explored through conformational clustering, principal component analysis and free energy landscape. The molecular interactions of NDH-2 before and after its binding with the inhibitor RYL-552 were analyzed, and the key residues and important hydrogen bonds were also determined. The results show that the association of RYL-552 results in the weakening of intramolecular hydrogen bonds and large allosterism of NDH-2. There was a significant positive correlation between the angular change of the key pocket residues in the NADH-FAD-pockets that represents the global functional motion and the change in distance between NADH-C4 and FAD-N5 that represents the electron transfer efficiency. Finally, the possible non-competitive inhibitory mechanism of RYL-552 was proposed. Specifically, the association of inhibitors with NDH-2 significantly affects the global motion mode of NDH-2, leading to widening of the distance between NADH and FAD through cooperative motion induction; this reduces the electron transfer efficiency of the mitochondrial respiratory chain. The simulation results provide useful theoretical guidance for subsequent antimalarial drug design based on the NDH-2 structure and the respiratory chain electron transfer mechanism.


Asunto(s)
Antimaláricos/química , Cetonas/química , NADH Deshidrogenasa/antagonistas & inhibidores , Plasmodium falciparum/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Quinolinas/química , Transporte de Electrón , Flavina-Adenina Dinucleótido/química , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , NAD/química , NADH Deshidrogenasa/química , Oxidación-Reducción , Unión Proteica , Relación Estructura-Actividad , Termodinámica
11.
Sci Rep ; 9(1): 9987, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31292494

RESUMEN

Mitochondrial complex I (CI) is the largest multi-subunit oxidative phosphorylation (OXPHOS) protein complex. Recent availability of a high-resolution human CI structure, and from two non-human mammals, enabled predicting the impact of mutations on interactions involving each of the 44 CI subunits. However, experimentally assessing the impact of the predicted interactions requires an easy and high-throughput method. Here, we created such a platform by cloning all 37 nuclear DNA (nDNA) and 7 mitochondrial DNA (mtDNA)-encoded human CI subunits into yeast expression vectors to serve as both 'prey' and 'bait' in the split murine dihydrofolate reductase (mDHFR) protein complementation assay (PCA). We first demonstrated the capacity of this approach and then used it to examine reported pathological OXPHOS CI mutations that occur at subunit interaction interfaces. Our results indicate that a pathological frame-shift mutation in the MT-ND2 gene, causing the replacement of 126 C-terminal residues by a stretch of only 30 amino acids, resulted in loss of specificity in ND2-based interactions involving these residues. Hence, the split mDHFR PCA is a powerful assay for assessing the impact of disease-causing mutations on pairwise protein-protein interactions in the context of a large protein complex, thus offering a possible mechanistic explanation for the underlying pathogenicity.


Asunto(s)
Mutación del Sistema de Lectura , Predisposición Genética a la Enfermedad/genética , NADH Deshidrogenasa/química , NADH Deshidrogenasa/genética , Sitios de Unión , Núcleo Celular/genética , Clonación Molecular , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Humanos , Mitocondrias/genética , Modelos Moleculares , NADH Deshidrogenasa/metabolismo , Unión Proteica
12.
Sci Rep ; 9(1): 2775, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808983

RESUMEN

Sequence comparison is an essential part of modern molecular biology research. In this study, we estimated the parameters of Markov chain by considering the frequencies of occurrence of the all possible amino acid pairs from each alignment-free protein sequence. These estimated Markov chain parameters were used to calculate similarity between two protein sequences based on a fuzzy integral algorithm. For validation, our result was compared with both alignment-based (ClustalW) and alignment-free methods on six benchmark datasets. The results indicate that our developed algorithm has a better clustering performance for protein sequence comparison.


Asunto(s)
Proteínas/química , Algoritmos , Secuencia de Aminoácidos , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/clasificación , Humanos , Cadenas de Markov , Proteínas Mitocondriales/química , Proteínas Mitocondriales/clasificación , NADH Deshidrogenasa/química , NADH Deshidrogenasa/clasificación , Filogenia , Proteínas/clasificación , Alineación de Secuencia
13.
Hum Mol Genet ; 28(9): 1515-1529, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30597069

RESUMEN

Mitochondrial DNA (mtDNA) mutations have been associated with Leber's hereditary optic neuropathy (LHON) and their pathophysiology remains poorly understood. In this study, we investigated the pathophysiology of a LHON susceptibility allele (m.3394T>C, p.30Y>H) in the Mitochondrial (MT)-ND1 gene. The incidence of m.3394T>C mutation was 2.7% in the cohort of 1741 probands with LHON. Extremely low penetrances of LHON were observed in 26 pedigrees carrying only m.3394T>C mutation, while 21 families bearing m.3394T>C, together with m.11778G>A or m.14484T>C mutation, exhibited higher penetrance of LHON than those in families carrying single mtDNA mutation(s). The m.3394T>C mutation disrupted the specific electrostatic interactions between Y30 of p.MT-ND1 with the sidechain of E4 and backbone carbonyl group of M1 of NDUFA1 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1) of complex I, thereby altering the structure and function of complex I. We demonstrated that these cybrids bearing only m.3394T>C mutation caused mild mitochondrial dysfunctions and those harboring both m.3394T>C and m.11778G>A mutations exhibited greater mitochondrial dysfunctions than cybrids carrying only m.11778G>A mutation. In particular, the m.3394T>C mutation altered the stability of p.MT-ND1 and complex I assembly. Furthermore, the m.3394T>C mutation decreased the activities of mitochondrial complexes I, diminished mitochondrial ATP levels and membrane potential and increased the production of reactive oxygen species in the cybrids. These m.3394T>C mutation-induced alterations aggravated mitochondrial dysfunctions associated with the m.11778G>A mutation. These resultant biochemical defects contributed to higher penetrance of LHON in these families carrying both mtDNA mutations. Our findings provide new insights into the pathophysiology of LHON arising from the synergy between mitochondrial ND1 and ND4 mutations.


Asunto(s)
Alelos , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , NADH Deshidrogenasa/genética , Atrofia Óptica Hereditaria de Leber/diagnóstico , Atrofia Óptica Hereditaria de Leber/genética , Fenotipo , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Línea Celular , Genes Mitocondriales , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Ratones , NADH Deshidrogenasa/química , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fosforilación , Transmisión Sináptica , Vesículas Sinápticas/metabolismo
14.
Biochim Biophys Acta Bioenerg ; 1860(3): 201-208, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30448269

RESUMEN

NDH-1 is a gigantic redox-driven proton pump linked with respiration and cyclic electron flow in cyanobacterial cells. Based on experimentally resolved X-ray and cryo-EM structures of the respiratory complex I, we derive here molecular models of two isoforms of the cyanobacterial NDH-1 complex involved in redox-driven proton pumping (NDH-1L) and CO2-fixation (NDH-1MS). Our models show distinct structural and dynamic similarities to the core architecture of the bacterial and mammalian respiratory complex I. We identify putative plastoquinone-binding sites that are coupled by an electrostatic wire to the proton pumping elements in the membrane domain of the enzyme. Molecular simulations suggest that the NDH-1L isoform undergoes large-scale hydration changes that support proton-pumping within antiporter-like subunits, whereas the terminal subunit of the NDH-1MS isoform lacks such structural motifs. Our work provides a putative molecular blueprint for the complex I-analogue in the photosynthetic energy transduction machinery and demonstrates that general mechanistic features of the long-range proton-pumping machinery are evolutionary conserved in the complex I-superfamily.


Asunto(s)
Cianobacterias/enzimología , Simulación de Dinámica Molecular , NADH Deshidrogenasa/química , Antiportadores , Proteínas Bacterianas/química , Sitios de Unión , Complejo I de Transporte de Electrón/química , Transferencia de Energía , Estructura Molecular , Fotosíntesis , Plastoquinona/metabolismo , Isoformas de Proteínas , Subunidades de Proteína , Bombas de Protones
15.
BMC Bioinformatics ; 20(1): 739, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31888452

RESUMEN

BACKGROUND: Recent advances in genome sequencing technologies and the cost drop in high-throughput sequencing continue to give rise to a deluge of data available for downstream analyses. Among others, evolutionary biologists often make use of genomic data to uncover phenotypic diversity and adaptive evolution in protein-coding genes. Therefore, multiple sequence alignments (MSA) and phylogenetic trees (PT) need to be estimated with optimal results. However, the preparation of an initial dataset of multiple sequence file(s) (MSF) and the steps involved can be challenging when considering extensive amount of data. Thus, it becomes necessary the development of a tool that removes the potential source of error and automates the time-consuming steps of a typical workflow with high-throughput and optimal MSA and PT estimations. RESULTS: We introduce LMAP_S (Lightweight Multigene Alignment and Phylogeny eStimation), a user-friendly command-line and interactive package, designed to handle an improved alignment and phylogeny estimation workflow: MSF preparation, MSA estimation, outlier detection, refinement, consensus, phylogeny estimation, comparison and editing, among which file and directory organization, execution, manipulation of information are automated, with minimal manual user intervention. LMAP_S was developed for the workstation multi-core environment and provides a unique advantage for processing multiple datasets. Our software, proved to be efficient throughout the workflow, including, the (unlimited) handling of more than 20 datasets. CONCLUSIONS: We have developed a simple and versatile LMAP_S package enabling researchers to effectively estimate multiple datasets MSAs and PTs in a high-throughput fashion. LMAP_S integrates more than 25 software providing overall more than 65 algorithm choices distributed in five stages. At minimum, one FASTA file is required within a single input directory. To our knowledge, no other software combines MSA and phylogeny estimation with as many alternatives and provides means to find optimal MSAs and phylogenies. Moreover, we used a case study comparing methodologies that highlighted the usefulness of our software. LMAP_S has been developed as an open-source package, allowing its integration into more complex open-source bioinformatics pipelines. LMAP_S package is released under GPLv3 license and is freely available at https://lmap-s.sourceforge.io/.


Asunto(s)
Interfaz Usuario-Computador , Secuencia de Aminoácidos , Ciclooxigenasa 2/química , Ciclooxigenasa 2/clasificación , Humanos , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/clasificación , NADH Deshidrogenasa/química , NADH Deshidrogenasa/clasificación , Filogenia , Alineación de Secuencia
16.
J Mol Graph Model ; 85: 242-249, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30227369

RESUMEN

Breast cancer is the second cause of death among women all around the world. One out of every eight women is diagnosed with breast cancer in Iran. There are many reasons for cancer, one of which is the mutations in the mitochondrial genome observed in most breast cancer studies. However, the aim of this study is to evaluate the genetic region of NADH dehydrogenase subunit 4 in patients with breast cancer. First, the genomic DNA was extracted from a tissue. The NADH dehydrogenase subunit 4 coding region was amplified by PCR, and then the SSCP was sequenced. After that, the molecular dynamics were employed. The association between the mutations and the prognostic factors such as ER, PR, HER-2, and age were statistically examined. The sequence of the ND4 area was determined in 24 suspected patients, and 15 nucleotide changes were reported. The role of this variations was investigated by in-silico. The harmful mutations were predicted based on some servers. The molecular dynamics results showed that there is a significant relationship between the mutant protein and the changes in the structural conformation. Our results showed that the mutation in the ND4 area plays an important role in developing breast cancer. So, it can be concluded that the mitochondrial NADH dehydrogenase analysis may help to detect breast cancer in the early stages.


Asunto(s)
Neoplasias de la Mama/genética , Simulación de Dinámica Molecular , NADH Deshidrogenasa/química , NADH Deshidrogenasa/genética , Polimorfismo de Nucleótido Simple , Biomarcadores de Tumor , Neoplasias de la Mama/metabolismo , Evolución Molecular , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Irán , Mutación , NADH Deshidrogenasa/metabolismo , Conformación Proteica
17.
Eur J Hum Genet ; 26(11): 1582-1587, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29976978

RESUMEN

Medical genomics research performed in diverse population facilitates a better understanding of the genetic basis of developmental disorders, with regional implications for community genetics. Autosomal recessive mitochondrial complex I deficiency (MCID) accounts for a constellation of clinical features, including encephalopathies, myopathies, and Leigh Syndrome. Using whole-exome sequencing, we identified biallelic missense variants in NDUFV1 that encodes the 51-kD subunit of complex I (NADH dehydrogenase) NDUFV1. Mapping the variants on published crystal structures of mitochondrial complex I demonstrate that the novel c.1118T > C (p.(Phe373Ser)) variant is predicted to diminish the affinity of the active pocket of NDUFV1 for FMN that correlates to an early onset of debilitating MCID symptoms. The c.1156C > T (p.(Arg386Cys)) variant is predicted to alter electron shuttling required for energy production and correlate to a disease onset in childhood. NDUFV1 c.1156C > T (p.(Arg386Cys)) represents a founder variant in South Asian populations that have value in prioritizing this variant in a population-specific manner for genetic diagnostic evaluation. In conclusion, our results demonstrate the advantage of analyzing population-specific sequences to understand the disease pathophysiology and prevalence of inherited risk variants in the underrepresented populations.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Enfermedades Mitocondriales/genética , Mutación Missense , NADH Deshidrogenasa/genética , Sitios de Unión , Niño , Complejo I de Transporte de Electrón/genética , Femenino , Humanos , Lactante , Masculino , Enfermedades Mitocondriales/patología , NADH Deshidrogenasa/química
18.
Nat Struct Mol Biol ; 25(7): 548-556, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915388

RESUMEN

Complex I (NADH:ubiquinone oxidoreductase) uses the reducing potential of NADH to drive protons across the energy-transducing inner membrane and power oxidative phosphorylation in mammalian mitochondria. Recent cryo-EM analyses have produced near-complete models of all 45 subunits in the bovine, ovine and porcine complexes and have identified two states relevant to complex I in ischemia-reperfusion injury. Here, we describe the 3.3-Å structure of complex I from mouse heart mitochondria, a biomedically relevant model system, in the 'active' state. We reveal a nucleotide bound in subunit NDUFA10, a nucleoside kinase homolog, and define mechanistically critical elements in the mammalian enzyme. By comparisons with a 3.9-Å structure of the 'deactive' state and with known bacterial structures, we identify differences in helical geometry in the membrane domain that occur upon activation or that alter the positions of catalytically important charged residues. Our results demonstrate the capability of cryo-EM analyses to challenge and develop mechanistic models for mammalian complex I.


Asunto(s)
Complejo I de Transporte de Electrón/química , Mitocondrias Cardíacas/enzimología , Animales , Sitios de Unión , Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Activación Enzimática , Ratones , Modelos Moleculares , NADH Deshidrogenasa/química , NADH Deshidrogenasa/metabolismo , NADH Deshidrogenasa/ultraestructura , Nucleótidos/química , Nucleótidos/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Elementos Estructurales de las Proteínas , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Ubiquinona/química , Ubiquinona/metabolismo
19.
Bioorg Med Chem Lett ; 28(13): 2239-2243, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29859905

RESUMEN

Energy generation is a promising area of drug discovery for both bacterial pathogens and parasites. Type II NADH dehydrogenase (NDH-2), a vital respiratory membrane protein, has attracted attention as a target for the development of new antitubercular and antimalarial agents. To date, however, no potent, specific inhibitors have been identified. Here, we performed a site-directed screening technique, tethering-fragment based drug discovery, against wild-type and mutant forms of NDH-2 containing engineered active-site cysteines. Inhibitory fragments displayed IC50 values between 3 and 110 µM against NDH-2 mutants. Possible binding poses were investigated by in silico modelling, providing a basis for optimisation of fragment binding and improved potency against NDH-2.


Asunto(s)
Proteínas Bacterianas/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/metabolismo , Proteínas de la Membrana/metabolismo , NADH Deshidrogenasa/metabolismo , Bacillaceae/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cisteína/química , Cisteína/genética , Inhibidores Enzimáticos/química , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación , NADH Deshidrogenasa/antagonistas & inhibidores , NADH Deshidrogenasa/química , NADH Deshidrogenasa/genética , Unión Proteica
20.
Molecules ; 23(4)2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29584709

RESUMEN

There is an urgent need for the discovery of new antileishmanial drugs with a new mechanism of action. Type 2 NADH dehydrogenase from Leishmania infantum (LiNDH2) is an enzyme of the parasite's respiratory system, which catalyzes the electron transfer from NADH to ubiquinone without coupled proton pumping. In previous studies of the related NADH: ubiquinone oxidoreductase crystal structure from Saccharomyces cerevisiae, two ubiquinone-binding sites (UQI and UQII) were identified and shown to play an important role in the NDH-2-catalyzed oxidoreduction reaction. Based on the available structural data, we developed a three-dimensional structural model of LiNDH2 using homology detection methods and performed an in silico virtual screening campaign to search for potential inhibitors targeting the LiNDH2 ubiquinone-binding site 1-UQI. Selected compounds displaying favorable properties in the computational screening experiments were assayed for inhibitory activity in the structurally similar recombinant NDH-2 from S. aureus and leishmanicidal activity was determined in the wild-type axenic amastigotes and promastigotes of L. infantum. The identified compound, a substituted 6-methoxy-quinalidine, showed promising nanomolar leishmanicidal activity on wild-type axenic promastigotes and amastigotes of L. infantum and the potential for further development.


Asunto(s)
Antiprotozoarios/química , Leishmania infantum/enzimología , NADH Deshidrogenasa/metabolismo , Quinaldinas/química , Antiprotozoarios/farmacología , Dominio Catalítico/efectos de los fármacos , Simulación por Computador , Evaluación Preclínica de Medicamentos , Leishmania infantum/efectos de los fármacos , Modelos Moleculares , NADH Deshidrogenasa/química , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Quinaldinas/farmacología , Homología Estructural de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...